The Asymmetric Effects of Oil Price Shocks*

Sajjadur Rahman and Apostolos Serletis†
Department of Economics
University of Calgary
Calgary, Alberta, T2N 1N4

May 11, 2008

Abstract

In this paper we investigate the effects of oil price uncertainty and its asymmetry on real economic activity in the United States, in the context of a general bivariate framework in which a vector autoregression is modified to accommodate GARCH-in-Mean errors, as detailed in Engle and Kroner (1995), Grier et al. (2004), and Shields et al. (2005). The model allows for the possibilities of spillovers and asymmetries in the variance-covariance structure for real output growth and the change in the real price of oil. Our measure of oil price uncertainty is the conditional variance of the oil price change forecast error. We isolate the effects of volatility in the change in the price of oil and its asymmetry on output growth and, following Koop et al. (1996), Hafner and Herwartz (2006), and van Dijk et al. (2007), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) and Volatility Impulse Response Functions (VIRFs) to trace the effects of independent shocks on the conditional means and the conditional variances, respectively, of the variables.

JEL classification: E32, C32.

Keywords: Crude oil, Volatility, Vector autoregression, Multivariate GARCH-in-Mean VAR.

*We would like to thank John Elder, Christian Hafner, Ölan Henry, Helmut Herwartz, and Kalvinder Shields. Serletis also gratefully acknowledges financial support from the Social Sciences and Humanities Research Council of Canada (SSHRC).

†Corresponding author. Phone: (403) 220-4092; Fax: (403) 282-5262; E-mail: Serletis@ucalgary.ca; Web: http://econ.ucalgary.ca/serletis.htm.
1 Introduction

Questions regarding the relationship between the price of oil and economic activity are fundamental empirical issues in macroeconomics. Hamilton (1983) showed that oil prices had significant predictive content for real economic activity in the United States prior to 1972 while Hooker (1996) argued that the estimated linear relations between oil prices and economic activity appear much weaker after 1973. In the debate that followed, several authors have suggested that the apparent weakening of the relationship between oil prices and economic activity is illusory, arguing instead that the true relationship between oil prices and real economic activity is asymmetric, with the correlation between oil price decreases and output significantly different than the correlation between oil price increases and output — see, for example, Mork (1989) and Hamilton (2003). More recently, however, Edelstein and Kilian (2007, 2008) evaluate alternative hypotheses and argue that the evidence of asymmetry cited in the literature is driven by a combination of ignoring the effects of the 1986 Tax Reform Act on fixed investment and the aggregation of energy and non-energy related investment.

Although there exists a vast literature that investigates the effects of oil prices on the real economy, there are relatively few studies that investigate the effects of uncertainty about oil prices. Lee et al. (1995) were the first to employ recent advances in financial econometrics and model oil price uncertainty using a univariate GARCH (1,1) model. They calculated an oil price shock variable, reflecting the unanticipated component as well as the time-varying conditional variance of oil price changes, introduced it in various vector autoregression (VAR) systems, and found that oil price volatility is highly significant in explaining economic growth. They also found evidence of asymmetry, in the sense that positive shocks have a strong effect on growth while negative shocks do not. A disadvantage of the Lee et al. (1995) approach, however, is that oil price volatility is a generated regressor, as described by Pagan (1984).

More recently, Elder and Serletis (2008) examine the direct effects of oil price uncertainty on real economic activity in the United States, over the modern OPEC period, in the context of a structural VAR that is modified to accommodate GARCH-in-Mean errors, as detailed in Engle and Kroner (1995) and Elder (2004). As a measure of uncertainty about the impending oil price, they use the conditional standard deviation of the forecast error for the change in the price of oil. Their main result is that uncertainty about the price of oil has had a negative and significant effect on real economic activity over the post 1975 period, even after controlling for lagged oil prices and lagged real output. Their estimated effect is robust to a number a different specifications, including alternative measures of the price of oil and of economic activity, as well as alternative sample periods. They also find that accounting for oil price uncertainty tends to reinforce the decline in real GDP in response to higher oil prices, while moderating the short run response of real GDP to lower oil prices.

In this paper we move the empirical literature forward, by investigating the asymmetric effects of uncertainty on output growth and oil price changes as well as the response of
uncertainty about output growth and oil price changes to shocks. In doing so, we use an extremely general bivariate framework in which a vector autoregression is modified to accommodate GARCH-in-Mean errors, as detailed in Engle and Kroner (1995), Grier et al. (2004), and Shields et al. (2005). The model allows for the possibilities of spillovers and asymmetries in the variance-covariance structure for real activity and the real price of oil. As in Elder and Serletis (2008), our measure of oil price change volatility is the conditional variance of the oil price change forecast error. We isolate the effects of oil price change volatility and its asymmetry on output growth and, following Koop et al. (1996), Grier et al. (2004), and Hafner and Herwartz (2006), we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) and Volatility Impulse Response Functions (VIRFs) to trace the effects of independent shocks on the conditional means and the conditional variances, respectively, of the variables.

We find that our bivariate, GARCH-in-mean, asymmetric VAR-BEKK model embodies a reasonable description of the monthly U.S. data, over the period from 1981:1 to 2007:1. We show that the conditional variance-covariance process underlying output growth and the change in the real price of oil exhibits significant non-diagonality and asymmetry, and present evidence that increased uncertainty about the change in the real price of oil is associated with a lower average growth rate of real economic activity. Generalized impulse response experiments highlight the asymmetric effects of positive and negative shocks in the change in the real price of oil to output growth. Also, volatility impulse response experiments reveal that the effect of bad news (positive shocks to the change in the real price of oil and negative shocks to output growth) on the conditional variances of output growth and the change in the real price of oil and their covariance differs in magnitude and persistence from that of good news of similar magnitude.

The paper is organized as follows. Section 2 presents the data and Section 3 provides a brief description of the bivariate, GARCH-in-Mean, asymmetric VAR-BEKK model. Sections 4, 5, and 6 assess the appropriateness of the econometric methodology by various information criteria and present and discuss the empirical results. The final section concludes the paper.

2 The Data

We use monthly data for the United States, from the Federal Reserve Economic Database (FRED) maintained by the Federal Reserve Bank of St. Louis, over the period from 1981:1 to 2007:1, on two variables — the industrial production index (y_t) and the real price of oil (oil_t). In particular, we use the spot price on West Texas Intermediate (WTI) crude oil as the nominal price of oil and divide it by the consumer price index (CPI) to obtain the real price of oil. Following Bernanke et al. (1997), Lee and Ni (2002), Hamilton and Herrera (2004), and Edelstein and Kilian (2008), we use the industrial production index as a proxy
variable for real output. It is to be noted that industrial output reflects only manufacturing,
mining, and utilities, and represents only about 20% of total output. It captures, however,
economic activity that is likely to be directly affected by oil prices and uncertainty about oil
prices.

Table 1 presents summary statistics for the annualized logarithmic first differences of \(y_t \) and \(\text{oil}_t \), denoted as \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \), and Figures 1 and 2 plot the \(\ln y_t \) and \(\Delta \ln y_t \) and \(\ln \text{oil}_t \) and \(\Delta \ln \text{oil}_t \) series, respectively, with shaded area indicating NBER recessions. Both \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) are skewed and there is significant amount of excess kurtosis present in
the data. Moreover, a Jarque-Bera (1980) test for normality, distributed as a \(\chi^2(2) \)
under the null hypothesis of normality, suggests that each of \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) fail to satisfy the
null hypothesis of the test.

A battery of unit root and stationarity tests are conducted in Table 1 in \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \). In particular, we report the augmented Dickey-Fuller (ADF) test [see Dickey and
Fuller (1981)] and, given that unit root tests have low power against relevant trend stationary
alternatives, we also present Kwiatkowski et al. (1992) tests, known as KPSS tests, for level
and trend stationarity. As can be seen, the null hypothesis of a unit root can be rejected
at conventional significance levels. Moreover, the \(t \)-statistics \(\hat{\eta}_u \) and \(\hat{\eta}_f \) that test the null hypotheses of level and trend stationarity are small relative to their 5% critical values of 0.463 and 0.146 (respectively), given in Kwiatkowski et al. (1992). We thus conclude that \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) are stationary [integrated of order zero, or I(0), in the terminology of
Engle and Granger (1987)].

In panel C of Table 1, we conduct Ljung-Box (1979) tests for serial correlation in \(\Delta \ln y_t \) and
\(\Delta \ln \text{oil}_t \). The \(Q \)-statistics, \(Q(4) \) and \(Q(12) \), are asymptotically distributed as \(\chi^2(36) \)
on the null hypothesis of no autocorrelation. Clearly, there is significant serial dependence in the data. We also present (in the last column of panel C) Engle’s (1982) ARCH \(\chi^2 \) test statistic, distributed as a \(\chi^2(1) \) on the null of no ARCH. The test indicates that there is
strong evidence of conditional heteroscedasticity in each of the \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) series.

Finally, as we are interested in the asymmetry of the volatility response to news, in panel
D of Table 1 we present Engle and Ng (1993) tests for ‘sign bias,’ ‘negative size bias,’ and
‘positive size bias,’ based on the following regression equations, respectively,

\[
\tilde{\varepsilon}^2_t = \phi_0 + \phi_1 D^-_{t-1} + \xi_t; \\
\tilde{\varepsilon}^2_t = \phi_0 + \phi_1 D^-_{t-1} \tilde{\varepsilon}_{t-1} + \xi_t; \\
\tilde{\varepsilon}^2_t = \phi_0 + \phi_1 D^+_{t-1} \tilde{\varepsilon}_{t-1} + \xi_t,
\]

where \(\tilde{\varepsilon}_t \) is the residual from a fourth-order autoregression of the raw data (\(\Delta \ln y_t \) or
\(\Delta \ln \text{oil}_t \)), treated as a collective measure of news at time \(t, D^-_{t-1} \) is a dummy variable that
takes a value of one when \(\tilde{\varepsilon}_{t-1} \) is negative (bad news) and zero otherwise, \(D^+_{t-1} = 1 - D^-_{t-1}, \)
picking up the observations with positive innovations (good news), and \(\phi_0 \) and \(\phi_1 \) are
parameters. The \(t \)-ratio of the \(\phi_1 \) coefficient in each of regression equations (1)-(3) is defined as
the test statistic.

The sign bias test in equation (1) examines the impact that positive and negative shocks have on volatility which is not predicted by the volatility model under consideration. In particular, if the response of volatility to shocks is asymmetric (that is, positive and negative shocks to \(\hat{\varepsilon}_{t-1} \) impact differently upon the conditional variance, \(\hat{\varepsilon}_{t}^2 \)), then \(\phi_1 \) will be statistically significant. Irrespective of whether the response of volatility to shocks is symmetric or asymmetric, the size (or magnitude) of the shock could also affect volatility. The negative size bias test in equation (2) focuses on the asymmetric effects of negative shocks (that is, whether small and large negative shocks to \(\hat{\varepsilon}_{t-1} \) impact differently upon the conditional variance, \(\hat{\varepsilon}_{t}^2 \)). In this case, \(D_{t-1}^- \) is used as a slope dummy variable in equation (2) and negative size bias is present if \(\phi_1 \) is statistically significant. The positive size bias test in equation (3) focuses on the different effects that large and small positive shocks have on volatility, and positive size bias is present if \(\phi_1 \) is statistically significant in (3). We also conduct a joint test for both sign and size bias using the following regression equation,

\[
\hat{\varepsilon}_{t}^2 = \phi_0 + \phi_1 D_{t-1}^- + \phi_2 D_{t-1}^- \hat{\varepsilon}_{t-1} - \phi_3 D_{t-1}^+ \hat{\varepsilon}_{t-1} + \xi_t. \tag{4}
\]

In the joint test in equation (4), the test statistic is equal to \(T \times R^2 \) (where \(R^2 \) is the R-squared from the regression) and follows a \(\chi^2 \) distribution with three degrees of freedom under the null hypothesis of no asymmetric effects.

As can be seen in panel D of Table 1, the conditional volatility of output growth is sensitive to the sign and size of the innovation. In particular, there is strong evidence of sign and negative size bias in the output growth volatility, and the joint test for both sign and size bias is highly significant. Also, the conditional volatility of the change in the price of oil displays negative size bias and the joint test for both sign and size bias is significant at conventional significance levels.

3 Econometric Methodology

Given the evidence of conditional heteroscedasticity in the \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) series, we characterize the joint data generating process underlying \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) as a bivariate GARCH-in-Mean model, as follows

\[
y_t = a + \sum_{i=1}^{p} \Gamma_i y_{t-i} + \sum_{j=1}^{q} \Psi_j h_{t-j} + e_t \tag{5}
\]

\[
e_t|\Omega_{t-1} \sim (0, H_t), \quad H_t = \begin{bmatrix}
 h_{\Delta \ln y \Delta \ln y, t} & h_{\Delta \ln y \Delta \ln \text{oil}, t} \\
 h_{\Delta \ln \text{oil} \Delta \ln y, t} & h_{\Delta \ln \text{oil} \Delta \ln \text{oil}, t}
\end{bmatrix},
\]
where \(\mathbf{0} \) is the null vector, \(\Omega_{t-1} \) denotes the available information set in period \(t-1 \), and

\[
\begin{align*}
\mathbf{y}_t &= \begin{bmatrix} \Delta \ln y_t \\ \Delta \ln \text{oil}_t \end{bmatrix} ; \\
\mathbf{e}_t &= \begin{bmatrix} e_{\Delta \ln y_t} \\ e_{\Delta \ln \text{oil}_t} \end{bmatrix} ; \\
\mathbf{h}_t &= \begin{bmatrix} h_{\Delta \ln y \Delta \ln y_t} \\ h_{\Delta \ln \text{oil} \Delta \ln \text{oil}_t} \end{bmatrix} ; \\
\mathbf{a} &= \begin{bmatrix} a_{\Delta \ln y} \\ a_{\Delta \ln \text{oil}} \end{bmatrix} ; \\
\mathbf{\Gamma}_i &= \begin{bmatrix} \gamma_{11}^{(i)} \\ \gamma_{12}^{(i)} \\ \gamma_{21}^{(i)} \\ \gamma_{22}^{(i)} \end{bmatrix} ; \\
\mathbf{\Psi}_j &= \begin{bmatrix} \psi_{11}^{(j)} \\ \psi_{12}^{(j)} \\ \psi_{21}^{(j)} \\ \psi_{22}^{(j)} \end{bmatrix}.
\end{align*}
\]

Notice that we have not added any error correction term in the model as the null hypothesis of no cointegration between output (\(\ln y_t \)) and the real price of oil (\(\ln \text{oil}_t \)) cannot be rejected.

Multivariate GARCH models require that we specify volatilities of \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \), measured by conditional variances. Several different specifications have been proposed in the literature, including the VECH model of Bollerslev et al. (1988), the CCORR model of Bollerslev (1990), the FARCH specification of Engle et al. (1990), the BEKK model proposed by Engle and Kroner (1995), and the DCC model of Engle (2002). However, none of these specifications is capable of capturing the asymmetry of the volatility response to news.

In this regard, given the asymmetric effects of news on volatility in the \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \) series, we use an asymmetric version of the BEKK model, introduced by Grier et al. (2004), as follows

\[
H_t = C' \Sigma + \sum_{j=1}^f B_j' \mathbf{H}_{t-j} B_j + \sum_{k=1}^g A_k' e_{t-k} e_{t-k}' A_k + D' \mathbf{u}_{t-1} \mathbf{u}_{t-1}' D
\]

where \(C, B_j, A_k, \) and \(D \) are 2 \times 2 matrices (for all values of \(j \) and \(k \)), with \(C \) being a triangular matrix to ensure positive definiteness of \(H \). In equation (6), \(\mathbf{u}_t = (u_{\Delta \ln y_t}, u_{\Delta \ln \text{oil}_t})' \) and captures potential asymmetric responses. In particular, if the change in the price of oil, \(\Delta \ln \text{oil}_t \), is higher than expected, we take that to be bad news. We therefore capture bad news about oil price changes by a positive oil price change residual, by defining \(u_{\Delta \ln \text{oil}_t} = \max \{ e_{\Delta \ln \text{oil}_t}, 0 \} \). We also capture bad news about output growth by defining \(u_{\Delta \ln y_t} = \min \{ e_{\Delta \ln y_t}, 0 \} \). Hence, \(\mathbf{u}_t = (u_{\Delta \ln y_t}, u_{\Delta \ln \text{oil}_t})' = (\min \{ e_{\Delta \ln y_t}, 0 \}, \max \{ e_{\Delta \ln \text{oil}_t}, 0 \})' \).

The specification in equation (6) allows past volatilities, \(\mathbf{H}_{t-j} \), as well as lagged values of \(ee' \) and \(uu' \), to show up in estimating current volatilities of \(\Delta \ln y_t \) and \(\Delta \ln \text{oil}_t \). Moreover, the introduction of the \(uu' \) term in (6) extends the BEKK model by relaxing the assumption of symmetry, thereby allowing for different relative responses to positive and negative shocks in the conditional variance-covariance matrix, \(\mathbf{H} \).

There are \(n + n^2 (p + q) + n(n + 1)/2 + n^2 (f + g + 1) \) parameters in (5)-(6) and in order to deal with estimation problems in the large parameter space we assume that \(f = g = 1 \) in equation (6), consistent with recent empirical evidence regarding the superiority of
GARCH(1,1) models — see, for example, Hansen and Lunde (2005). It is also to be noted that we have not included an interest rate variable in the model (in the y_t equation), although it would seem to be important as oil prices affect output through an indirect effect on the rate of interest. We have kept the dimension of the model low because of computational and degree of freedom problems in the large parameter space. For example, with $n = 2$, $p = q = 2$ in equation (5) and $f = g = 1$ in equation (6), the model has 33 parameters to be estimated. If we introduce one more variable in the model (like the interest rate), then we would have to estimate 81 parameters. Moreover, the tests that we conduct in Section 4 indicate that the exclusion of such a variable is not expected to result in significant misspecification error. In order to estimate our bivariate GARCH-in-Mean asymmetric BEKK model, we construct the likelihood function, ignoring the constant term and assuming that the statistical innovations are conditionally gaussian

$$l_t = -\frac{1}{2} \sum_{t=t+1}^{T} \log |H_t| - \frac{1}{2} \sum_{t=t+1}^{T} \left(e_t'H_t^{-1}e_t \right),$$

where e_t and H_t are evaluated at their estimates. The log-likelihood is maximized with respect to the parameters Γ_i ($i = 1, \ldots, p$), Ψ_j ($j = 1, \ldots, q$), C, B, A, and D. As we are using the BEKK model, we do not need to impose any restrictions on the variance parameters to make H_t positive definite. Moreover, we are estimating all the parameters simultaneously rather than estimating mean and variance parameters separately, thus avoiding the Lee et al. (1995) problem of generated regressors.

4 Empirical Evidence

Initially we used the AIC and SIC criteria to select the optimal values of p and q in (5). However, because of computational difficulties in the large parameter space and remaining serial correlation and ARCH effects in the standardized residuals, we set $p = 3$ and $q = 2$ in equation (5). Hence, with $p = 3$ and $q = 2$ in equation (5), and $f = g = 1$ in equation (6), we estimate a total of 37 parameters. Quasi-maximum likelihood (QML) estimates of the parameters and diagnostic test statistics are presented in Tables 2 and 3.

We conduct a battery of misspecification tests, using robustified versions of the standard test statistics based on the standardized residuals,

$$z_i = \frac{e_{i,t}}{\sqrt{\hat{h}_{ij,t}}}, \quad \text{for } i, j = \Delta \ln y, \Delta \ln oil.$$

As shown in panel A of Table 2, the Ljung-Box Q-statistics for testing serial correlation cannot reject the null hypothesis of no autocorrelation (at conventional significance levels) for the values and the squared values of the standardized residuals, suggesting that there
is no evidence of conditional heteroscedasticity. Moreover, the failure of the data to reject the null hypotheses of $E(z) = 0$ and $E(z^2) = 1$, implicitly indicates that our bivariate asymmetric GARCH-in-Mean model does not bear significant misspecification error — see, for example, Kroner and Ng (1998).

In Table 3, we also present diagnostic tests suggested by Engle and Ng (1993) and Kroner and Ng (1998), based on the ‘generalized residuals,’ defined as $e_{ij,t} = e_{ij,t} - h_{ij,t}$ for $i, j = \Delta \ln y$, $\Delta \ln oil$. For all symmetric GARCH models, the news impact curve — see Engle and Ng (1993) — is symmetric and centered at $e_{i,t-1} = 0$. A generalized residual can be thought of as the distance between a point on the scatter plot of $e_{i,t}e_{j,t}$ from a corresponding point on the news impact curve. If the conditional heteroscedasticity part of the model is correct, $E_{t-1}(e_{i,t}e_{j,t} - h_{ij,t}) = 0$ for all values of i and j, generalized residuals should be uncorrected with all information known at time $t - 1$. In other words, the unconditional expectation of $e_{i,t}e_{j,t}$ should be equal to its conditional one, $h_{ij,t}$.

The Engle and Ng (1993) and Kroner and Ng (1998) misspecification indicators test whether we can predict the generalized residuals by some variables observed in the past, but which are not included in the model — this is exactly the intuition behind $E_{t-1}(e_{i,t}e_{j,t} - h_{ij,t}) = 0$. In this regard, we follow Kroner and Ng (1998) and Shields et al. (2005) and define two sets of misspecification indicators. In a two dimensional space, we first partition $(\Delta \ln y, t - 1)$ into four quadrants in terms of the possible sign of the two residuals. Then, to shed light on any possible sign bias of the model, we define the first set of indicator functions as $I(e_{\Delta \ln y, t - 1} < 0)$, $I(e_{\Delta \ln oil, t - 1} < 0)$, $I(e_{\Delta \ln y, t - 1} < 0; e_{\Delta \ln oil, t - 1} < 0)$, $I(e_{\Delta \ln y, t - 1} > 0; e_{\Delta \ln oil, t - 1} < 0)$, $I(e_{\Delta \ln y, t - 1} < 0; e_{\Delta \ln oil, t - 1} > 0)$ and $I(e_{\Delta \ln y, t - 1} > 0; e_{\Delta \ln oil, t - 1} > 0)$, where $I(\cdot)$ equals one if the argument is true and zero otherwise. Significance of any of these indicator functions indicates that the model (5)-(6) is incapable of predicting the effects of some shocks to either $\Delta \ln y_t$ or $\Delta \ln oil_t$. Moreover, due to the fact that the possible effect of a shock could be a function of both the size and the sign of the shock, we define a second set of indicator functions, $e^2_{\Delta \ln y, t - 1}I(e_{\Delta \ln y, t - 1} < 0)$, $e^2_{\Delta \ln y, t - 1}I(e_{\Delta \ln oil, t - 1} < 0)$, $e^2_{\Delta \ln y, t - 1}I(e_{\Delta \ln y, t - 1} < 0)$, $e^2_{\Delta \ln oil, t - 1}I(e_{\Delta \ln oil, t - 1} < 0)$, and $e^2_{\Delta \ln oil, t - 1}I(e_{\Delta \ln oil, t - 1} < 0)$. These indicators are technically scaled versions of the former ones, with the magnitude of the shocks as a scale measure.

We conducted indicator tests and report the results in Table 3. As can be seen in Table 3, most of the indicators fail to reject the null hypothesis of no misspecification — all test statistics in Table 3 are distributed as $\chi^2(1)$. Hence, our model (5)-(6) captures the effects of all sign bias and sign-size scale depended shocks in predicting volatility and there is no significant misspecification error. This means that the exclusion of the interest rate variable (in y_t), mentioned earlier, is not expected to lead to significant misspecification problems.

Turning now back to panel B of Table 2, the diagonality restriction, $\gamma_{ij}^{(i)} = \gamma_{ij}^{(2)} = 0$ for $i = 1, 2, 3$, is rejected, meaning that the data provide strong evidence of the existence of dynamic interactions between $\Delta \ln y_{t-1}$ and $\Delta \ln oil_t$. The null hypothesis of homoscedastic disturbances requires the A, B, and D matrices to be jointly insignificant (that is, $\alpha_{ij} = \alpha_{ij}^{(0)}$).
\(\beta_{ij} = \delta_{ij} = 0 \) for all \(i, j \) and is rejected at the 1% level or better, suggesting that there is significant conditional heteroscedasticity in the data. The null hypothesis of symmetric conditional variance-covariances, which requires all elements of the \(D \) matrix to be jointly insignificant (that is, \(\delta_{ij} = 0 \) for all \(i, j \)), is rejected at the 1% level or better, implying the existence of some asymmetries in the data which the model is capable of capturing. Also, the null hypothesis of a diagonal covariance process requires the off-diagonal elements of the \(A \), \(B \), and \(D \) matrices to be jointly insignificant (that is, \(\alpha_{12} = \alpha_{21} = \beta_{12} = \beta_{21} = \delta_{12} = \delta_{21} = 0 \)), but these estimated coefficients are jointly significant at the 14% level of significance.

Thus the \(\Delta \ln y_t - \Delta \ln oil_t \) process is strongly conditionally heteroscedastic, with innovations to oil price changes significantly influencing the conditional variance of output growth in an asymmetric way. Moreover, the sign as well as the size of oil price change innovations are important. To establish the relationship between the volatility in the change in the price of oil and output growth, in Table 2 we test the null hypothesis that the volatility of \(\Delta \ln oil_t \) does not (Granger) cause output growth, \(H_0: \psi_{12} = 0 \). We strongly reject the null hypothesis, finding strong evidence in support of the hypothesis that \(\Delta \ln oil_t \) volatility Granger causes output growth.

In Figures 3, 4, and 5 we plot the conditional standard deviations of output growth and the change in the price of oil as well as the conditional covariance implied by our estimates of the asymmetric VAR-BEKK model in Table 2. In Figure 3, the biggest episode of output growth volatility coincides with the 1982 NBER recession — the biggest recession in the sample. Regarding the change in the real price of oil, \(\Delta \ln Oi_l_t \), Figure 4 shows that the biggest episodes of oil price change volatility took place in 1986, 1990, and 1999. These volatility jumps in \(\Delta \ln Oi_l_t \) do not coincide with NBER recessions, except perhaps that in 1991, but the relatively smaller volatility jump in the oil price change in 1982 coincides with the biggest recession in the sample. Finally, the conditional covariance between \(\Delta \ln y_t \) and \(\Delta \ln Oil_t \), shown in Figure 5, is highest in 1986, 1990, and 1999, and is negative in 1982 and 2005.

5 Generalized Impulse Response Functions

As van Dijk et al. (2007) recently put it, “it generally is difficult, if not impossible, to fully understand and interpret nonlinear time series models by considering the estimated values of the model parameters only.” Thus, in order to quantify the dynamic response of output growth and oil price changes to shocks and to investigate the statistical significance of the asymmetry in the variance-covariance structure, we calculate Generalized Impulse Response Functions (GIRFs), introduced by Koop et al. (1996) and recently used by Grier et al. (2004), based on our bivariate, GARCH-in-Mean, asymmetric VAR-BEKK model (5)-(6).

Traditional impulse response functions, which are more usefully applied to linear models than to nonlinear ones, measure the effect of a shock (say of size \(\delta \)) hitting the system at
time \(t \) on the state of the system at time \(t+n \), given that no other shocks hit the system. As Koop et al. (1996, p. 121) put it, “the idea is very similar to Keynesian multiplier analysis, with the difference that the analysis is carried out with respect to shocks or ‘innovations’ of macroeconomic time series, rather than the series themselves (such as investment or government expenditure).” In the case of multivariate nonlinear models, however, traditional impulse response functions depend on the sign and size of the shock as well as the history of the system (i.e., expansionary or contractionary) before the shock hits — see, for example, Potter (2000).

In our asymmetric bivariate, GARCH-in-Mean, VAR-BEKK model, shocks impact on output growth and the change in the price of oil through the conditional mean as described in equation (5) and with lags through the conditional variance as described in equation (6). Moreover, the impulse responses of \(\Delta \ln y_t \) and \(\Delta \ln \text{Oil}_t \) depend on the composition of the \(e_{\Delta \ln y_t} \) and \(e_{\Delta \ln \text{Oil}_t} \) shocks — that is, the effect of a shock to \(\Delta \ln \text{Oil}_t \) is not isolated from having a contemporaneous effect on \(\Delta \ln y_t \) and vice versa. The GIRFs that we use in this paper provide a method of dealing with the problems of shock, history, and composition dependence of impulse responses in multivariate (linear and) nonlinear models.

In particular, assuming that \(y_t \) is a random vector, the GIRF for an arbitrary current shock, \(v_t \), and history, \(\omega_{t-1} \), is defined as

\[
\text{GIRF}_y(n, v_t, \omega_{t-1}) = E\left[y_{t+n} | v_t, \omega_{t-1} \right] - E\left[y_{t+n} | \omega_{t-1} \right],
\]

for \(n = 0, 1, 2, \ldots \). Assuming that \(v_t \) and \(\omega_{t-1} \) are realizations of the random variables \(V_t \) and \(\Omega_{t-1} \) (where \(\Omega_{t-1} \) is the set containing information used to forecast \(y_t \)) that generate realizations of \(\{ y_t \} \), then according to Koop et al. (1996), the GIRF in (7) can be considered to be a realization of a random variable defined by

\[
\text{GIRF}_y(n, V_t, \Omega_{t-1}) = E\left[y_{t+n} | V_t, \Omega_{t-1} \right] - E\left[y_{t+n} | \Omega_{t-1} \right].
\]

Equation (8) is the difference between two conditional expectations, \(E\left[y_{t+n} | V_t, \omega_{t-1} \right] \) and \(E\left[V_{t+n} | \omega_{t-1} \right] \), which are themselves random variables. Hence, \(\text{GIRF}_y(n, V_t, \Omega_{t-1}) \) represents a realization of this random variable.

The computation of GIRFs in the case of multivariate nonlinear models is made difficult by the inability to construct analytical expressions for the conditional expectations, \(E\left[y_{t+n} | V_t, \omega_{t-1} \right] \) and \(E\left[V_{t+n} | \omega_{t-1} \right] \), in equation (8). To deal with this problem, Monte Carlo methods of stochastic simulation are used to construct the GIRFs. Here, we allow for time-varying composition dependence and follow the algorithm described in Koop et al. (1996). In particular, using 310 data points as histories, we first transform the estimated residuals by using the variance-covariance structure and Jordan decomposition. Then at each history, 50 realizations are drawn randomly, thereby obtaining identical and independent distributions over time. Recovering the time varying dependence among the residuals,
15500 realizations of impulse responses are calculated for each horizon. Finally, the whole process is replicated 150 times to average out the effects of impulses.

The GIRFs to one standard deviation shocks in $\Delta \ln y_t$ and $\Delta \ln oil_t$ are shown in Figures 6 and 7 — they show the effect on $\Delta \ln y_t$ and $\Delta \ln oil_t$ of an initial one standard deviation shock in $\Delta \ln y_t$ and $\Delta \ln oil_t$. As can be seen, none of the shocks is very persistent, although the shock to $\Delta \ln oil_t$ on $\Delta \ln y_t$ is more persistent than the shock to $\Delta \ln y_t$ on $\Delta \ln oil_t$, as it takes longer for $\Delta \ln y_t$ to return to its original value. Shocks to output growth and the change in the price of oil provide a large stimulus to $\Delta \ln y_t$ and $\Delta \ln oil_t$ for the first few months. In particular, in response to an oil price change shock, output growth declines by more than 0.75% in the first quarter of the year and returns to its mean within one and a half years. Also the change in the price of oil responds very strongly (almost around 12%), to the innovation in output growth within the first few months of the year.

In Figures 8 and 9, we differentiate between positive and negative shocks, in order to address issues regarding the asymmetry of shocks. As can be seen in Figure 8, output growth declines due to a positive $\Delta \ln oil_t$ shock and increases in response to a negative $\Delta \ln oil_t$ shock. The responses are not the mirror image of each other, suggesting that output growth, $\Delta \ln y_t$, responds asymmetrically to shocks in the change in the price of oil, $\Delta \ln oil_t$. Also the response of output growth to a negative $\Delta \ln oil_t$ shock returns to zero faster than to a positive shock of equal magnitude, suggesting that positive shocks in the change in the price of oil have more persistent effects on output growth than negative ones. Figure 9 shows the GIRFs of $\Delta \ln oil_t$ to positive and negative output growth shocks. A positive $\Delta \ln y_t$ shock raises $\Delta \ln oil_t$ and a negative $\Delta \ln y_t$ shock lowers $\Delta \ln oil_t$. The response of $\Delta \ln oil_t$ to output growth shocks is also asymmetric — a positive output growth shock has a larger effect on the change in the price of oil compared to a negative $\Delta \ln y_t$ shock.

Given the asymmetric nature of the specification of our bivariate asymmetric VAR-BEKK model, we follow Van Dijk et al. (2007) and use the GIRFs to positive and negative shocks to compute a random asymmetry measure, defined as follows,

$$
ASY_y(n, V^+_t, \Omega_{t-1}) = \text{GIRF}_y(n, V^+_t, \Omega_{t-1}) + \text{GIRF}_y(n, -V^+_t, \Omega_{t-1}),
$$

where $\text{GIRF}_y(n, V^+_t, \Omega_{t-1})$ denotes the GIRF derived from conditioning on the set of all possible positive shocks, $\text{GIRF}_y(n, -V^+_t, \Omega_{t-1})$ denotes the GIRF derived from conditioning on the set of all possible negative shocks, and $V^+_t = \{v_t | v_t > 0\}$. The distribution of $ASY(n, V^+_t, \Omega_{t-1})$ can provide an indication of the asymmetric effects of positive and negative shocks. In particular, if $ASY(n, V^+_t, \Omega_{t-1})$ has a symmetric distribution with a mean of zero, then positive and negative shocks have exactly the same effect (with opposite sign).

We have computed the asymmetry measures for $\Delta \ln y_t$ and $\Delta \ln oil_t$ and show the distributions of the respective $ASY_y(n, V^+_t, \Omega_{t-1})$ measures in Figures 10 and 11 at horizons $n = 6$, $n = 9$, and $n = 12$. As can be seen in Figure 10, on average output growth exhibits more persistence to a positive $\Delta \ln oil_t$ shock than to a negative one. In particular, the loss
of output growth due to a positive $\Delta \ln \text{oil}_t$ shock (bad news) at horizon $n = 9$ is 0.083% in excess of the gain in output growth from a negative $\Delta \ln \text{oil}_t$ shock (good news) of equal magnitude. Figure 11 shows the asymmetry measure for an output growth shock on $\Delta \ln \text{oil}_t$. We find a stronger effect of a positive output growth shock on the change in the price of oil than of a negative shock of equal magnitude. On average at horizon 9, the increase in $\Delta \ln \text{oil}_t$ due to a positive output growth shock is 0.256% in excess of the decrease in $\Delta \ln \text{oil}_t$ due to a negative $\Delta \ln \text{y}_t$ shock.

6 Volatility Impulse Response Functions

The GIRFs, introduced by Koop et al. (1996), trace the effects of independent shocks (or news) on the conditional mean. Recently, Hafner and Herwartz (2006) have introduced a new concept of impulse response functions, known as ‘volatility impulse response functions’ (VIRFs), tracing the effects of independent shocks on the conditional variance — see also Shields et al. (2005) for an early application of the Hafner and Herwartz (2006) VIRFs concept.

We start with the conditional variance-covariance matrix of e_t, H_t, and define $Q_t = \text{vech}(H_t)$ to be a 3×1 random vector with the following elements (in that order): $h_{\Delta \ln \text{y}_t}$, $h_{\Delta \ln \text{y}_t \Delta \ln \text{oil}_t}$, $h_{\Delta \ln \text{oil}_t}$. Then the VIRFs of Q_t, for $n = 0, 1, \ldots$, are given by

$$\text{VIRF}_Q(n, v_t, \omega_{t-1}) = E\left[Q_{t+n} | v_t, \omega_{t-1} \right] - E\left[Q_{t+n} | \omega_{t-1} \right]. \quad (10)$$

Hence, the VIRF is conditional on the initial shock and history, v_t and ω_{t-1}, and constructs the response by averaging out future innovations given the past and present. Following Koop et al. (1996) and assuming that v_t and ω_{t-1} are realizations of the random variables V_t and Ω_{t-1} that generate realizations of $\{Q\}$, the VIRF in (10) can be considered to be a realization of a random variable given by

$$\text{VIRF}_Q(n, V_t, \Omega_{t-1}) = E\left[Q_{t+n} | V_t, \Omega_{t-1} \right] - E\left[Q_{t+n} | \Omega_{t-1} \right].$$

As already noted, the first element of $\text{VIRF}_Q(n, V_t, \Omega_{t-1})$ gives the impulse response of the conditional variance of $\Delta \ln \text{y}_t$, $h_{\Delta \ln \text{y}_t}$, the second that of the conditional covariance, $h_{\Delta \ln \text{y}_t \Delta \ln \text{oil}_t}$, and the third that of the conditional variance of $\Delta \ln \text{oil}_t$, $h_{\Delta \ln \text{oil}_t}$. It should also be noted that in contrast to the GIRFs where positive and negative shocks produce opposite effects, VIRFs consist of the same (positive sign) effect irrespective of the sign of the shocks. Also, shock linearity does not hold in the case of VIRFs. Finally, unlike traditional impulse responses that do not depend on history, VIRFs depend on history through the conditional variance-covariance matrix at time $t = 0$ when the innovation occurs.

Using an analytic version of the VIRF, as described in Hafner and Herwartz (2006), Figures 12 and 13 show the VIRFs to shocks in $\Delta \ln \text{y}_t$ and $\Delta \ln \text{oil}_t$. In Figure 12, shocks
to the change in the price of oil, $\Delta \ln \text{oil}_t$, produce much higher responses in the conditional variance of output growth, $h_{\Delta \ln y,t}$, than in the conditional variance of the change in the price of oil, $h_{\Delta \ln \text{oil},t}$ for the first ten months. Moreover, output growth volatility dies out more quickly than the volatility of the change in the price of oil — the effect on $h_{\Delta \ln y,t}$ is below the effect on $h_{\Delta \ln \text{oil},t}$ after ten months. In Figure 13, shocks to output growth have also a very remarkable impact on the conditional variance of the change in the price of oil, $h_{\Delta \ln \text{oil},t}$ and the conditional variance of output growth, $h_{\Delta \ln y,t}$. Now, the peak response of the change in the price of oil is much larger than output growth volatility and $h_{\Delta \ln \text{oil},t}$ takes longer to return to its original position compared to $h_{\Delta \ln y,t}$.

As with the GIRFs, we use the VIRFs to positive and negative innovations to compute the following random asymmetry measure

$$ASY_Q(n, \mathbf{V}^+_t, \Omega_{t-1}) = \text{VIRF}_Q(n, \mathbf{V}^+_t, \Omega_{t-1}) - \text{VIRF}_Q(n, -\mathbf{V}^+_t, \Omega_{t-1}),$$

where $\text{VIRF}_Q(n, \mathbf{V}^+_t, \Omega_{t-1})$ denotes the VIRF derived from conditioning on the set of all possible positive innovations, $\text{VIRF}_Q(n, -\mathbf{V}^+_t, \Omega_{t-1})$ denotes the VIRF derived from conditioning on the set of all possible negative innovations, and $\mathbf{V}^+_t = \{v_t|v_t > 0\}$. The distribution of $ASY_Q(n, \mathbf{V}^+_t, \Omega_{t-1})$ will be centered at zero if positive and negative shocks have exactly the same effect. The difference between the random asymmetry measures (9) and (11) is that the latter is the difference between $\text{VIRF}_Q(n, \mathbf{V}^+_t, \Omega_{t-1})$ and $\text{VIRF}_Q(n, -\mathbf{V}^+_t, \Omega_{t-1})$ whereas the former is the sum of $\text{GIRF}_y(n, \mathbf{V}^+_t, \Omega_{t-1})$ and $\text{GIRF}_y(n, -\mathbf{V}^+_t, \Omega_{t-1})$. This is so because unlike the GIRFs where positive and negative shocks cause the response functions to take opposite signs, the VIRFs are made up of the squares of the innovations and are thus of the same sign.

We have computed the asymmetry measures $ASY_Q(n, \mathbf{V}^+_t, \Omega_{t-1})$ and show the distributions of these measures in Figures 14 and 15, at horizon $n = 3, 6, 9$. The distribution in Figure 14 indicates that on average positive shocks to the change in the price of oil have more persistent effects on output growth volatility than negative shocks do. The asymmetry measure for an oil price change shock to output growth volatility at horizon $n = 3$ is 0.14%. Also, in Figure 15, good news (positive shock) about output growth have more persistent effects on the volatility of the change in the price of oil than bad news. The asymmetry measure for an output growth shock to the volatility in the change in the price of oil at horizon $n = 3$ is 1.30%.

7 Conclusion

Recent empirical research regarding the relationship between the price of oil and real economic activity has focused on the role of uncertainty about oil prices — see, for example, Elder and Serletis (2008). In this paper, we examine the effects of oil price uncertainty and its asymmetry on real economic activity in the United States, in the context of a dynamic economic model.
framework in which a vector autoregression has been modified to accommodate asymmetric GARCH-in-Mean errors. We use a bivariate VAR (in output growth and the change in the real price of oil) because the identification of higher order VARs is usually highly questionable.

Our model is extremely general and allows for the possibilities of spillovers and asymmetries in the variance-covariance structure for real output growth and the change in the real price of oil. Our measure of oil price uncertainty is the conditional variance of the oil price change forecast error. We isolate the effects of volatility in the change in the price of oil and its asymmetry on output growth and, following Koop et al. (1996), Hafner and Herwartz (2006), and van Dijk et al. (2007) we employ simulation methods to calculate Generalized Impulse Response Functions (GIRFs) and Volatility Impulse Response Functions (VIRFs) to trace the effects of independent shocks on the conditional mean and the conditional variance, respectively, of output growth and the change in the real price of oil.

We find that our bivariate, GARCH-in-Mean, asymmetric BEKK model embodies a reasonable description of the United States data on output growth and the change in the real price of oil. We show that the conditional variance-covariance process underlying output growth and the change in the real price of oil exhibits significant non-diagonality and asymmetry. We present evidence that increased uncertainty about the change in the real price of oil is associated with a lower average growth rate of real economic activity. Generalized impulse response experiments highlight the asymmetric effects of positive and negative shocks in the change in the real price of oil to output growth. Also, volatility impulse response experiments reveal that the effect of bad news (positive shocks to the change in the real price of oil and negative shocks to output growth) on the variances of output growth and the change in the real price of oil and their covariance differs in magnitude and persistence from that of good news of similar magnitude.
References

Table 1. Summary Statistics

A. Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Variance</th>
<th>Skewness</th>
<th>Excess kurtosis</th>
<th>J-B normality</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln y_t$</td>
<td>2.682</td>
<td>74.062</td>
<td>−0.764</td>
<td>3.533</td>
<td>301.393 (0.000)</td>
</tr>
<tr>
<td>$\Delta \ln oil_t$</td>
<td>3.558</td>
<td>8267.555</td>
<td>2.775</td>
<td>32.999</td>
<td>22768.284 (0.000)</td>
</tr>
</tbody>
</table>

B. Unit Root and Stationary Tests

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF(τ)</th>
<th>ADF(μ)</th>
<th>ADF</th>
<th>η_μ</th>
<th>η_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln y_t$</td>
<td>−5.487</td>
<td>−6.321</td>
<td>−6.317</td>
<td>0.118</td>
<td>0.110</td>
</tr>
<tr>
<td>$\Delta \ln oil_t$</td>
<td>−7.309</td>
<td>−7.301</td>
<td>−7.525</td>
<td>0.273</td>
<td>0.020</td>
</tr>
<tr>
<td>5% cv</td>
<td>−1.941</td>
<td>−2.871</td>
<td>−3.425</td>
<td>0.463</td>
<td>0.146</td>
</tr>
</tbody>
</table>

C. Tests for Serial Correlation and ARCH

<table>
<thead>
<tr>
<th>Variable</th>
<th>Q(4)</th>
<th>Q(12)</th>
<th>ARCH(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln y_t$</td>
<td>63.838</td>
<td>80.037</td>
<td>12.615</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>$\Delta \ln oil_t$</td>
<td>23.047</td>
<td>31.690</td>
<td>13.244</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.010)</td>
</tr>
</tbody>
</table>

D. Engle and Ng (1993) Tests for Sign and Size Bias in Variance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sign</th>
<th>Negative size</th>
<th>Positive size</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \ln y_t$</td>
<td>24.440</td>
<td>−7.846</td>
<td>−1.622</td>
<td>37.102</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.000)</td>
<td>(0.171)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>$\Delta \ln oil_t$</td>
<td>1679.703</td>
<td>−63.152</td>
<td>15.136</td>
<td>16.780</td>
</tr>
<tr>
<td></td>
<td>(0.401)</td>
<td>(0.000)</td>
<td>(0.407)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are tail areas of tests. Annualized logarithmic first differences are used.
Figure 1. Logged Real Output and the Real Output Growth Rate
Figure 2. Logged Real Oil Price and the Rate of Change in the Real Price of Oil
Table 2. The Bivariate GARCH-In-Mean Asymmetric BEKK Model

Model: Equations (2) and (3) with \(p = 3 \), \(q = 2 \), and \(f = g = 1 \)

A. Conditional mean equation

\[
\begin{align*}
\mathbf{a} &= \begin{bmatrix} 0.219 \\ -64.560 \end{bmatrix}, \quad \mathbf{\Gamma}_1 = \begin{bmatrix} 0.187 & 0.005 \\ 1.619 & 0.180 \end{bmatrix}, \quad \mathbf{\Gamma}_2 = \begin{bmatrix} 0.219 & -0.006 \\ 1.176 & 0.159 \end{bmatrix}, \quad \mathbf{\Gamma}_3 = \begin{bmatrix} 0.170 & -0.006 \\ -0.558 & 0.075 \end{bmatrix}, \\
\mathbf{\Psi}_1 &= \begin{bmatrix} 1.606 & -0.067 \\ 4.635 & -0.047 \end{bmatrix}, \quad \mathbf{\Psi}_2 = \begin{bmatrix} -1.100 & 0.041 \\ -0.956 & 0.454 \end{bmatrix}.
\end{align*}
\]

Residual diagnostics

<table>
<thead>
<tr>
<th>(z_{yt})</th>
<th>Mean</th>
<th>Variance</th>
<th>(Q(4))</th>
<th>(Q^2(4))</th>
<th>(Q(12))</th>
<th>(Q^2(12))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.037 (0.489)</td>
<td>0.962 (0.980)</td>
<td>3.933 (0.415)</td>
<td>7.940 (0.093)</td>
<td>144.434 (0.000)</td>
<td>53.536 (0.000)</td>
<td></td>
</tr>
<tr>
<td>0.032 (0.550)</td>
<td>0.965 (0.982)</td>
<td>5.601 (0.230)</td>
<td>6.087 (0.192)</td>
<td>10.784 (0.547)</td>
<td>8.789 (0.720)</td>
<td></td>
</tr>
</tbody>
</table>

B. Conditional variance-covariance structure

\[
\begin{align*}
\mathbf{C} &= \begin{bmatrix} 3.869 & 3.421 \\ 31.218 & 2.017 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -0.050 & -1.328 \\ 0.006 & 0.565 \end{bmatrix}, \\
\mathbf{A} &= \begin{bmatrix} -0.657 & 1.650 \\ 0.010 & 0.737 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0.610 & -0.422 \\ 0.010 & 0.157 \end{bmatrix}.
\end{align*}
\]

Hypothesis testing

Diagonal VAR	\(H_0 : \gamma_{12}^{(i)} = \gamma_{21}^{(i)} = 0 \), for \(i = 1, 2, 3 \)
No GARCH	\(H_0 : \alpha_{ij} = \beta_{ij} = \delta_{ij} = 0 \), for all \(i, j \)
No GARCH-M	\(H_0 : \psi_{ij}^{(k)} = 0 \), for all \(i, j, k \)
No asymmetry	\(H_0 : \delta_{ij} = 0 \), for \(i, j = 1, 2 \)
Diagonal GARCH	\(H_0 : \alpha_{12} = \alpha_{21} = \beta_{12} = \beta_{21} = \delta_{12} = \delta_{21} = 0 \)

\(p \approx 0.000 \)

Note: Numbers in parentheses are tail areas of tests.
Table 3

Diagnostic Tests Based On The News Impact Curve

<table>
<thead>
<tr>
<th></th>
<th>$e_{\Delta \ln y,t}^2 - h_{\Delta \ln y \Delta \ln y,t}$</th>
<th>$e_{\Delta \ln y,t}^2 e_{\Delta \ln oil,t} - h_{\Delta \ln y \Delta \ln oil,t}$</th>
<th>$e_{\Delta \ln oil,t}^2 - h_{\Delta \ln oil \Delta \ln oil,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I(e_{\Delta \ln y,t-1} < 0)$</td>
<td>0.337 (0.561)</td>
<td>0.240 (0.623)</td>
<td>0.359 (0.548)</td>
</tr>
<tr>
<td>$I(e_{\Delta \ln oil,t-1} < 0)$</td>
<td>0.059 (0.807)</td>
<td>0.009 (0.923)</td>
<td>0.875 (0.349)</td>
</tr>
<tr>
<td>$I(e_{\Delta \ln y,t-1} < 0, e_{\Delta \ln oil,t-1} < 0)$</td>
<td>0.122 (0.726)</td>
<td>0.108 (0.741)</td>
<td>0.953 (0.328)</td>
</tr>
<tr>
<td>$I(e_{\Delta \ln y,t-1} > 0, e_{\Delta \ln oil,t-1} < 0)$</td>
<td>0.416 (0.518)</td>
<td>0.204 (0.650)</td>
<td>4.433 (0.035)</td>
</tr>
<tr>
<td>$I(e_{\Delta \ln y,t-1} < 0, e_{\Delta \ln oil,t-1} > 0)$</td>
<td>0.102 (0.748)</td>
<td>0.817 (0.365)</td>
<td>0.085 (0.770)</td>
</tr>
<tr>
<td>$I(e_{\Delta \ln y,t-1} > 0, e_{\Delta \ln oil,t-1} > 0)$</td>
<td>0.001 (0.970)</td>
<td>0.982 (0.321)</td>
<td>1.810 (0.178)</td>
</tr>
<tr>
<td>$e_{\Delta \ln y,t-1}^2 I(e_{\Delta \ln y,t-1} < 0)$</td>
<td>4.424 (0.035)</td>
<td>0.275 (0.599)</td>
<td>1.841 (0.174)</td>
</tr>
<tr>
<td>$e_{\Delta \ln y,t-1}^2 I(e_{\Delta \ln oil,t-1} < 0)$</td>
<td>2.865 (0.090)</td>
<td>0.393 (0.530)</td>
<td>4.520 (0.033)</td>
</tr>
<tr>
<td>$e_{\Delta \ln oil,t-1}^2 I(e_{\Delta \ln y,t-1} < 0)$</td>
<td>2.849 (0.091)</td>
<td>0.333 (0.563)</td>
<td>4.056 (0.044)</td>
</tr>
<tr>
<td>$e_{\Delta \ln oil,t-1}^2 I(e_{\Delta \ln oil,t-1} < 0)$</td>
<td>2.556 (0.109)</td>
<td>0.080 (0.766)</td>
<td>0.220 (0.638)</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are tail areas of tests.
Figure 3. Conditional Standard Deviation of Output Growth
Figure 4. Conditional Standard Deviation of the Change in the Price of Oil
Figure 5. Covariance Between Output Growth and the Change in the Price of Oil
Figure 6. GIRF of Output Growth to an Oil Price Change Shock
Figure 7. GIRF of the Oil Price Change to an Output Growth Shock
Figure 8. GIRFs of Output Growth to Positive and Negative Shocks to the Change in the Price of Oil
Figure 9. GIRFs of the Change in the Price of Oil to Positive and Negative Output Growth Shocks
Figure 10. The Distribution of the Asymmetry Measure Based on the GIRFs of Output Growth to Shocks in the Change in the Price of Oil
Figure 11. The Distribution of the Asymmetry Measure Based on the GIRFs of the Change in the Price of Oil to Shocks in Output Growth
Figure 12. Volatility Responses to Oil Price Change Shocks
Figure 13. Volatility Responses to Output Growth Shocks
Figure 14. The Distribution of the Asymmetry Measure Based on the VIRFs of Output Growth to Shocks in the Change in the Price of Oil
Figure 15. The Distribution of the Asymmetry Measure Based on the VIRFs of the Change in the Price of Oil to Shocks in Output Growth